Copied to
clipboard

G = C22xHe3order 108 = 22·33

Direct product of C22 and He3

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C22xHe3, C62:2C3, C3.1C62, (C3xC6):2C6, C6.4(C3xC6), C32:3(C2xC6), (C2xC6).6C32, SmallGroup(108,30)

Series: Derived Chief Lower central Upper central

C1C3 — C22xHe3
C1C3C32He3C2xHe3 — C22xHe3
C1C3 — C22xHe3
C1C2xC6 — C22xHe3

Generators and relations for C22xHe3
 G = < a,b,c,d,e | a2=b2=c3=d3=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 95 in 55 conjugacy classes, 35 normal (6 characteristic)
C1, C2, C3, C3, C22, C6, C6, C32, C2xC6, C2xC6, C3xC6, He3, C62, C2xHe3, C22xHe3
Quotients: C1, C2, C3, C22, C6, C32, C2xC6, C3xC6, He3, C62, C2xHe3, C22xHe3

Smallest permutation representation of C22xHe3
On 36 points
Generators in S36
(1 25)(2 26)(3 27)(4 21)(5 19)(6 20)(7 24)(8 22)(9 23)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)
(1 16)(2 17)(3 18)(4 30)(5 28)(6 29)(7 33)(8 31)(9 32)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(25 34)(26 35)(27 36)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 14 10)(2 15 11)(3 13 12)(4 36 8)(5 34 9)(6 35 7)(16 23 19)(17 24 20)(18 22 21)(25 32 28)(26 33 29)(27 31 30)
(1 3 11)(2 14 13)(4 7 5)(6 34 36)(8 35 9)(10 12 15)(16 18 20)(17 23 22)(19 21 24)(25 27 29)(26 32 31)(28 30 33)

G:=sub<Sym(36)| (1,25)(2,26)(3,27)(4,21)(5,19)(6,20)(7,24)(8,22)(9,23)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,16)(2,17)(3,18)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,14,10)(2,15,11)(3,13,12)(4,36,8)(5,34,9)(6,35,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30), (1,3,11)(2,14,13)(4,7,5)(6,34,36)(8,35,9)(10,12,15)(16,18,20)(17,23,22)(19,21,24)(25,27,29)(26,32,31)(28,30,33)>;

G:=Group( (1,25)(2,26)(3,27)(4,21)(5,19)(6,20)(7,24)(8,22)(9,23)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,16)(2,17)(3,18)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,14,10)(2,15,11)(3,13,12)(4,36,8)(5,34,9)(6,35,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30), (1,3,11)(2,14,13)(4,7,5)(6,34,36)(8,35,9)(10,12,15)(16,18,20)(17,23,22)(19,21,24)(25,27,29)(26,32,31)(28,30,33) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,21),(5,19),(6,20),(7,24),(8,22),(9,23),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)], [(1,16),(2,17),(3,18),(4,30),(5,28),(6,29),(7,33),(8,31),(9,32),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(25,34),(26,35),(27,36)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,14,10),(2,15,11),(3,13,12),(4,36,8),(5,34,9),(6,35,7),(16,23,19),(17,24,20),(18,22,21),(25,32,28),(26,33,29),(27,31,30)], [(1,3,11),(2,14,13),(4,7,5),(6,34,36),(8,35,9),(10,12,15),(16,18,20),(17,23,22),(19,21,24),(25,27,29),(26,32,31),(28,30,33)]])

C22xHe3 is a maximal subgroup of   He3:6D4  He3:7D4  He3.A4  He3:A4  He3:2A4  He3.2A4

44 conjugacy classes

class 1 2A2B2C3A3B3C···3J6A···6F6G···6AD
order1222333···36···66···6
size1111113···31···13···3

44 irreducible representations

dim111133
type++
imageC1C2C3C6He3C2xHe3
kernelC22xHe3C2xHe3C62C3xC6C22C2
# reps1382426

Matrix representation of C22xHe3 in GL4(F7) generated by

6000
0600
0060
0006
,
1000
0600
0060
0006
,
2000
0010
0533
0004
,
1000
0400
0040
0004
,
2000
0655
0100
0341
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[2,0,0,0,0,0,5,0,0,1,3,0,0,0,3,4],[1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,0,0,0,6,1,3,0,5,0,4,0,5,0,1] >;

C22xHe3 in GAP, Magma, Sage, TeX

C_2^2\times {\rm He}_3
% in TeX

G:=Group("C2^2xHe3");
// GroupNames label

G:=SmallGroup(108,30);
// by ID

G=gap.SmallGroup(108,30);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-3,253]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^3=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<